

15P1000FeV2

LOW FREQUENCY TRANSDUCER
Preliminary Data Sheet

KEY FEATURES

- High power handling: 2.000 W program power
- 4" copper voice coil
- High sensitivity: 98 dB
- · FEA optimized magnetic circuit
- Designed with MMSS technology for high control, linearity and low harmonic distortion
- Low power compression losses
- Waterproof cone with treatment for both sides of the cone
- Extended mechanical displacement capability: X_{dam} ± 52 mm
- CONEX spider
- High excursion capabilities: X_{max} ± 8 mm
- Low frequency extension and high control

Nominal diameter	380 mm 15 in
Rated impedance	8 Ω
Minimum impedance	5,5 Ω
Power capacity*	1.000 W _{AES}
Program power	2.000 W
Sensitivity	98 dB 1W / 1m @ Z _N
Frequency range	40 - 2.000 Hz
Voice coil diameter	101,6 mm 4 in
BI factor	26,6 N/A
Moving mass	0,147 kg
Voice coil length	20 mm
Air gap height	12 mm
X _{damage} (peak to peak)	52 mm

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	42 Hz
D.C. Voice coil resistance, R _e	5,3 Ω
Mechanical Quality Factor, Q _{ms}	6,6
Electrical Quality Factor, Qes	0,29
Total Quality Factor, Qts	0,28
Equivalent Air Volume to C _{ms} , V _{as}	100,2 I
Mechanical Compliance, C _{ms}	97 μm / N
Mechanical Resistance, R _{ms}	5,91 kg / s
Efficiency, η ₀	2,47 %
Effective Surface Area, S _d	0,0855 m ²
Maximum Displacement, X _{max} ***	8 mm
Displacement Volume, V _d	684 cm ³
Voice Coil Inductance, Le @ 1 kHz	1,3 mH

Notes:

MOUNTING INFORMATION

Overall diameter	388 mm	15,28 in
Bolt circle diameter	370 mm	14,57 in
Baffle cutout diameter:		
- Front mount	352 mm	13,86 in
Depth	170 mm	6,70 in
Net weight	13,1 kg	28,9 lb
Shipping weight	14,1 kg	31,1 lb

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE & DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

^{*} The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

^{**} T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

^{***} The X_{max} is calculated as $(L_{vc} - H_{ag})/2 + (H_{ag}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.