wavecor

SPECIFICATIONS

WF120BD05/06 4³/₄" die cast, paper/glass fiber mid/woofers, 4/8 ohm

The $4\frac{3}{4}$ " transducers WF120BD05 (4 ohm) and WF120BD06 (8 ohm) were designed as high performance bass and midrange units for very compact monitors and high-end hi-fi speakers.

FEATURES

- Balanced Drive motor structure for optimal drive force symmetry resulting in largely reduced even order harmonic distortion
- Copper cap on center pole to reduce voice coil inductance and to minimize variations in voice coil inductance as a function of voice coil position
- Cone made of a new paper/glass fiber mix with improved consistency and stability
- Rigid die cast alu chassis with extensive venting for lower air flow speed reducing audible distortion
- Vented voice coil former for reduced distortion and compression
- Vented center pole with dual flares for reduced noise level at large cone excursions
- Heavy-duty black fiber glass voice coil former to reduce mechanical losses resulting in better dynamic performance and low-level details
- Large motor with 1¼" voice coil diameter for better control and power handling
- Built-in alu field-stabilizing ring for reduced distortion at high levels
- Low-loss suspension (high Qm) for better reproduction of details and dynamics
- Black motor parts for better heat transfer to the surrounding air
- Conex spider for better durability under extreme conditions
- Gold plated terminals to ensure long-term trouble free connection

NOMINAL SPECIFICATIONS

		WF120BD05		WF120BD06		
Notes	Parameter	Before	After	Before	After	Unit
		burn-in	burn-in	burn-in	burn-in	
	Nominal size	4	3/4	4	3/4	[inch.]
	Nominal impedance	4	4		8	[ohm]
	Recommended max. upper frequency limit	3.5 3.5		[kHz]		
1, 4	Sensitivity, 2.83V/1m (average SPL in range 300 - 1,000 Hz)	87 84		34	[dB]	
2, 4	Power handling, short term, IEC 268-5, no additional filtering					[W]
2, 4	Power handling, long term, IEC 268-5, no additional filtering					[W]
2, 4	Power handling, continuous, IEC 268-5, no additional filtering	60		60		[W]
	Effective radiating area, Sd	54		54		[cm²]
3, 4, 6	Resonance frequency (free air, no baffle), Fs	52	48	54	50	[Hz]
	Moving mass, incl. air (free air, no baffle), Mms	7	.3	6	.7	[g]
3	Force factor, Bxl	4.1		5.2		[N/A]
3, 4, 6	Suspension compliance, C _{ms}	1.29	1.50	1.29	1.50	[mm/N]
3, 4, 6	Equivalent air volume, Vas	5.3	6.2	5.3	6.2	[lit.]
3, 4, 6	Mechanical resistance, Rms	0.30	0.30	0.30	0.30	[Ns/m]
3, 6	Mechanical Q, Q _{ms}	7.9	7.4	7.6	7.0	[-]
3, 4, 6	Electrical Q, Q _{es}	0.45	0.42	0.54	0.50	[-]
3, 4, 6	Total Q, Q _{ts}	0.43	0.40	0.50	0.47	[-]
4	Voice coil resistance, RDC	3	.2	6.4		[ohm]
5	Voice coil inductance, Le (measured at 10 kHz)	0.087		0.16		[mH]
	Voice coil inside diameter					[mm]
	Voice coil winding height	1	2	1	2	[mm]
	Air gap height		4		4	[mm]
	Theoretical linear motor stroke, Xmax	±4		±4		[mm]
	Magnet weight	370		370		[g]
	Total unit net weight excl. packaging	1.0		1.0		[kg]
3, 4, 5	Krm	40		109		[mohm]
3, 4, 5	Erm	0.39		0.35		[-]
3, 4, 5	K _{xm}	61		145		[mH]
3, 4, 5	Exm	0.32		0.27		[-]

Note 1 Measured in infinite baffle.

Note 2 Tested in free air (no cabinet).

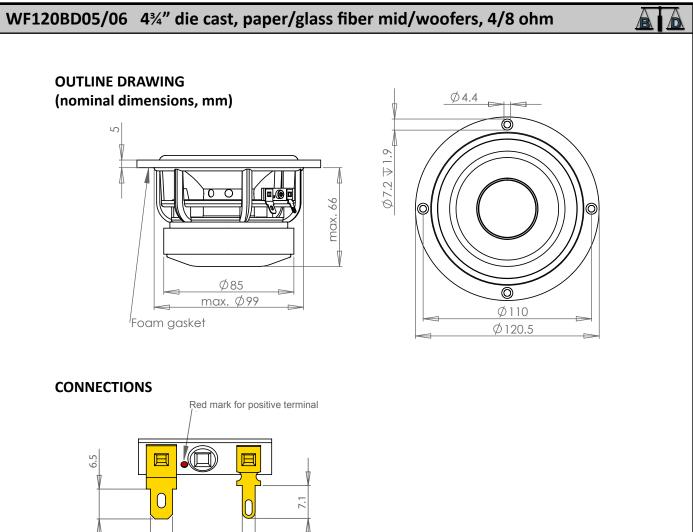
Note 3 Measured using a semi-constant current source, nominal level 2 mA.

Note 4 Measured at 25 deg. C

Note 5 It is generally a rough simplification to assume that loudspeaker transducer voice coils exhibit the characteristics of an inductor. Instead it is a far more accurate approach to use the more advanced model often referred to as the "Wright empirical model", also used in LEAP-4 as the TSL model (www.linearx.com), involving parameters K_{rm}, E_{rm}, K_{xm}, and E_{xm}. This more accurate transducer model is described in a technical paper here at our web site.


Note 6 After burn-in specifications are measured 12 hours after exiting the transducer by a 20 Hz sine wave for 2 hours at level 7.75/11 V_{RMS} (4/8 ohm version). The unit is not burned in before shipping.

Specifications are subject to change without any further notice. Copyright © 2013 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit **www.Wavecor.com**



Specifications are subject to change without any further notice. Copyright © 2013 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit **www.Wavecor.com**

SPECIFICATIONS

Thickness, both terminals: 0.5 mm Terminal plating: Gold

4.8

PACKAGING AND ORDERING INFORMATION

Part no. WF120BD05-01	4 ohm version, individual packaging (one piece per box)			
Part no. WF120BD05-02	4 ohm version, bulk packaging			
Part no. WF120BD06-01	8 ohm version, individual packaging (one piece per box)			
Part no. WF120BD06-02	8 ohm version, bulk packaging			

2.8

Latest update: January 27, 2013

Specifications are subject to change without any further notice. Copyright © 2013 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit **www.Wavecor.com**